A. Prokaryotic Transposons:
 - Are
 - Can move
 - Transposition provides

 - Are found
 - Transposon carries
 •
 - Can be lots of
 • Often they

1. Types of bacterial transposons
 a. Insertion sequences
 - Simplest
 - Found
 - *E. coli* likely to contain

 - Are autonomous units =

 - Composition of IS elements:
 i. Inverted
 - repeats are
 ii. Direct repeats
 - Target sequence that

 - Usually
iii. Transposase
- enzyme
- creates
- recognizes the
- only inverted repeats

- most IS elements
- IS1 has 2 ORFs =

<table>
<thead>
<tr>
<th>Transposon</th>
<th>Target repeat (bp)</th>
<th>Inverted repeat (bp)</th>
<th>Overall length</th>
<th>Target selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS1</td>
<td>9</td>
<td>23</td>
<td>768</td>
<td>Random</td>
</tr>
<tr>
<td>IS2</td>
<td>5</td>
<td>41</td>
<td>1327</td>
<td>Hotspots</td>
</tr>
<tr>
<td>IS4</td>
<td>11–13</td>
<td>18</td>
<td>1428</td>
<td>AAAN20TTT</td>
</tr>
<tr>
<td>IS5</td>
<td>4</td>
<td>16</td>
<td>1195</td>
<td>Hotspots</td>
</tr>
<tr>
<td>IS10R</td>
<td>9</td>
<td>22</td>
<td>1329</td>
<td>NGTNASCN</td>
</tr>
<tr>
<td>IS50R</td>
<td>9</td>
<td>9</td>
<td>1531</td>
<td>Hotspots</td>
</tr>
<tr>
<td>IS903</td>
<td>9</td>
<td>18</td>
<td>1057</td>
<td>Random</td>
</tr>
</tbody>
</table>
b. Composite transposons
- Some transposons
- Often these are
- Called
- Are composite elements because
- Arms may be

- In some cases

- Other cases
 - Functional IS arm can
 - Explains how
c. TnA-family transposons
 - Large
 - Are not
 - Carry genes for
 - Have unusual ends =
 - Transposition requires

2. Movement (transposition) mechanisms
 a. Replicative mechanisms
 - Element is
 • One element
 • Copied element
 - Stages of insertion
 i. Staggered nicks
 ii. Transposon joined
 iii. Single stranded end gaps

 - explains how
 - Replicative element
 i. Transposase acts
 ii. Resolvase acts
b. Nonreplicative transposition
 - Element moves
 - Stages
 i. Transposon
 - requires only
 ii. Transposon
 iii. Gapped donor site
c. Target sequences
 - Choice of target
 - In some cases,
 - Other cases =
 i. Consensus
 ii. DNA
 iii. Protein
 - Explains why

3. Consequences of transposition
 a. DNA rearrangements
 - When one transposon
 - Consequences depend on
 i. Oriented as direct repeats
 - intervening region
 - one complete element
ii. Oriented as inverted repeats
 - region between

b. Excision of an element
 - Precise excision occurs

 - Very rare event =

 - Most excision events are imprecise =

4. Transposition details
 a. Common mechanisms
 - Target and transposon

 - Nicked ends

 - Phage Mu is
- Phage uses transposition in 2 ways
 i. Integrates into
 ii. During lytic cycle,

- Early stages of Mu transposition
 i. MuA transposase binds
 - Also bind
 - MuA binding
 ii. Tetramer of MuA
 - L3 and R3
 iii. MuA cleaves DNA
 - MuA bond
 iv. MuB selects

- What happens next
b. Replicative transposition
 i. Starts with formation
 - element and
 - each end of the transposon
 ii. Replication extends
 - replication accomplished
 iii. Cointegrate formed
 - has direct repeats
 iv. Homologous recombination at transposons
c. Nonreplicative transposition
 - Can occur
 i. Crossover complex
 - no replication
 - another set
 - single-stranded regions

ii. Double-stranded breaks formed in transposon DNA
 - Single-stranded
 - Double-stranded breaks
 - Reaction is catalyzed
 - Transposon released
d. Transposition in TnA transposons
 - Uses replicative
 - Requires transposase

 - TnpA binds
 - *E. coli* host factor
 - TnpA recognizes
 - TnpB involved in
 - TnpB promotes
 - *res* site contains
 - TnpB breaks DNA

- Reaction is a
- Similar to
B. Eukaryotic Transposons:
- Transposable elements
 1. Transposable elements of Corn (Maize)
 a. Genetic considerations
 - Transposons first

- Observed

- Occurred because

b. Molecular considerations
- Corn genetic nomenclature
 =

- Recessive alleles

- Ds =

- All genes downstream
c. Types of elements in Corn

- Autonomous =
- Nonautonomous =
 - Still have
 - Can be

Maize transposon families

<table>
<thead>
<tr>
<th>Transposes are autonomous or nonautonomous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous</td>
</tr>
<tr>
<td>Transposes independently</td>
</tr>
<tr>
<td>Moves to new site</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ac (activator)</th>
<th>Da (dissociation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mm (modulator)</td>
<td></td>
</tr>
<tr>
<td>Spm (suppressor-mutator)</td>
<td>dSpm (defective Spm)</td>
</tr>
<tr>
<td>En (enhancer)</td>
<td>l (inhibitor)</td>
</tr>
<tr>
<td>Dotted</td>
<td>Unnamed</td>
</tr>
<tr>
<td>MuDR (mutator)</td>
<td>Mu</td>
</tr>
</tbody>
</table>

2. P-elements of Drosophila
 a. General characteristics
 - Drosophila stocks have

 - Lab stocks are
 - Flies caught in wild today
 - Within 100 years,
 - P-elements produce
 - P-elements can translate
b. Splicing in P-elements

i. In somatic tissues =
 - 3rd intron is

ii. Germline =
 - 3rd intron

- host factor in germline

c. Consequences of having P-elements:
 i. Hybrid dysgenesis
 - strains with P-elements
 - effects depend on
 - are flies with

- P male x M female crosses are infertile
 - Hybrid appears normal, but is sterile
 - No progeny
- hybrid dysgenesis occurs

ii. P-elements are used to make transgenic flies
 - in a test tube,
 - clone
 - inject “recombinant” plasmid
 - recombinant element
 - cross out the