A. Mutational Damage:
1. Introduction
 - Mutation rate =
 - Many
2. Classifying repair systems
 - Based on
 - Types of repairs
 a. Direct reversal
 - Reverses
 b. Replacement
 - Involves
 i. Base excision repair
 ii. Nucleotide excision
 iii. Mismatch repair
 - bases
 c. Recombination repair
 - Retrieval
 - Used
 d. Non-homologous end joining
 - Rejoins
 e. Resynthesis of
3. Classifying damages
 a. Single-base changes
 - Affect sequence of DNA,
 - Do not
 - Happens because one base is

 - Caused by:
 i. Mutation of one
 ii. Replication errors
 - Exert their effects

- Examples of single base changes
 i. Deamination
 - can occur
ii. Replication errors:
- can cause a distortion persists
- if repaired =
- if not repaired =

b. Structural distortions
- May provide
 - Introduction of covalent bond
i. Thymine (pyrimidine) dimers
ii. Addition of bulky adducts
- attachment

B. Repair Systems in Prokaryotes:
 1. Excision repair
 - Triggered by

 a. Stages of excision repair
 i. Incision
 - damaged structure

 - DNA strand

 ii. Excision
 - 5’-3’ exonuclease
iii. Synthesis
- single-stranded region serves
- new-strand synthesis

iv. Ligation of nicks
- DNA ligase

b. Enzymes of excision repair
- Most excision repair
 - *uvrA,B,C*
 - How Uvr complex works:
 i. UvrAB recognizes
 ii. UvrA dissociates;
 iii. UrvBC makes
 - 7 bases
 - 3-4 bases
 iv. UrvD (helicase) unwinds
- DNA pol I excises
- DNA pol II and DNA pol III can
- Other accessory proteins can
 - When
 - Mfd protein

2. Base flipping
 a. General considerations
 - Occurs when

 - Enzymes involved
 i. Glycosylases
 - Cleaves

 ii. Lyases
 - Opens
 b. Mechanism:
 i. Modified base
 - happens when
 • uracil found
- also occurs when

- A single human alkyladenine DNA glycosylase (AAG)

 ii. After removal of base,

 iii. DNA pol

 iv. Nick
3. Error-prone repair
 - Many repair systems are very faithful =
 - Exception is
 - Last ditch effort to
 - Places any
 - Repair system encoded by
 - Complex =
 - UmuD′₂C is a DNA polymerase V
 - Can save
 - Comes at consequence =

4. Mismatch repair
 - A mutated DNA base
 - When normal base is
 - Precautions are taken
 - System responsible
 - Major type of damage occurs
 - 8-oxo-dGTP can be
 - Incorporated O=G
a. Components of mismatch repair
 i. MutT hydrolyzes
 ii. MutM =
 iii. MutY =

 - MutM and MutY are

b. Mismatch repair and replication
 - Recall that newly replicated DNA is

 \[
 \begin{align*}
 & \text{GA*TC/GA*TC} \\
 & \text{GA*TC/GATC}
 \end{align*}
 \]
- DNA bases are
- Occurs faithfully
- Components of mismatch replication repair
 i. MutS binds to mismatch =
 - 1st
 - 2nd
 - creates a loop of DNA
 ii. MutL binds MutS =
 iii. MutH endonuclease
 - site is cleaved
 iv. New DNA strand
c. Mismatch repair of slippages
 - Homologues of
 - Repair mismatches that
 - Slippage occurs in region with DNA pol slips
 - Daughter strand has
 - Loop recognized

5. Recombination repair
 - Use activities that
 - Function
 - Major role is
 - Occurs when DNA pol

 a. Stages:
 i. DNA pol III
 ii. Since it cannot get past the roadblock,

 • one duplex =
 • other duplex =
iii. Piece of single-stranded DNA is

iv. The subsequent gap from the normal duplex

b. Pathways for recombination repair in *E. coli*
 i. RecBC =
 ii. RecF =
 - Both require
 - RecA can
c. Recombination repair and correcting replication errors
 - Requires the presence of a

 - Possible outcomes
 i. Fork stops moving forward;

 ii. Fork effectively
 iii. New daughter strands
 iv. Repair
 v. Helicase rolls
 vi. Replication

- Repair system
- RecA may
- RecBC involved
C. Repair Systems in Eukaryotes:
 1. Conserved elements
 a. Yeast
 - The best
 - Can identify repair systems
 - Find homologues
 a. RAD3 group =
 b. RAD6 group =
 c. RAD52 group =
 - Interesting correlation between gene expression and repair =

b. Mammals
 - Are human diseases
 - Best example =
 - Individuals can be
 - All involved
 - All have
2. Repairing double-stranded breaks
 - Double-stranded breaks
 - Can occur after
 - Are repaired by
 - Steps of NHEJ
 a. Broken end recognition
 - Heterodimer of
 - Form scaffold that
 - Recruit other enzymes =

 - crystal structure suggest that
 - each heterodimer bring
 - ligase binds
b. Filling in the ends =

c. Joining of ends