CLASS 2.5: 02/27/07

REPLICON STRUCTURES

A. The Replicon Structure in Chromosomes:
 - Origin =
 - Replicon =

1. Types of replicons
 a. Prokaryotic genomes
 i. Single-copy replicons
 - most of genome =
 - also can have
 ii. Multicopy replicons
 - elements present

b. Eukaryotic genomes
 i. Nuclear chromosomes =
 - have large number
 - each replicon fires
 ii. Mitochondria and chloroplasts
 - replicate

![Replication diagram](https://example.com/replication_diagram.png)
2. The Origin and bidirectional replication
 - Replication starts
 - Two strands
 - Each strand acts as
 - The point at which replication is occurring =
 - Most common form is bidirectional =

3. Prokaryotic Replicons
 - Replicon is usually
 - Includes bacterial chromosome,

 a. Stages of replication in *E. coli*
 i. Starts as distinct region =
 ii. Two replication forks move

 iii. Termination occurs at discrete sites
 - *ter* sites
 - are 2 terminator regions:
 - replication fork moves past *ter* region

 iv. At termination = 2 chromosomes are interlocked =
b. Bacterial replicons and transcription
 - Replication fork temporally
 - DNA pol moving in same direction as RNA pol can
 - Harder to resolve RNA pol and
 - Almost all active transcription units are
 - Exceptions are
c. Prokaryotic origins
 - *E. coli* has 11 copies of GATC =
 - Methylation occurs
 - Once replicated, site =
 - Hemi-methylated DNA
 - Hemi-methylation must

4. Eukaryotic replicons
 a. General characteristics
 - Eukaryotes have
 - Replication occurs
 - Each replicon is
 - Replicons located
 - May be regional controls
 - Small replicons
 - Do not
 - Replication fork moves
b. Eukaryotic origins
 - Best characterized
 - Origins identified by
 - Sequence that confers ability to replicate efficiently =
 - Structure of the ARS element (origin)
 i. AT rich sequence
 ii. Contains 4 domains
 iii. Only A well enough conserved
 iv. Target for origin recognition complex (ORC)
 - complex
 - contacts A and
 - initiation depends

B. Extrachromosomal Replicons:
 - Examples include

<table>
<thead>
<tr>
<th>Phages and plasmids live in bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of unit</td>
</tr>
<tr>
<td>Lytic phage</td>
</tr>
<tr>
<td>Lysogenic phage</td>
</tr>
<tr>
<td>Plasmid</td>
</tr>
<tr>
<td>Episome</td>
</tr>
</tbody>
</table>

- Key parameter in determining
1. Replicating the ends of linear molecules
 - Recall that DNA pol synthesizes

 - DNA pol cannot initiate right at end of molecule =

 - Becomes a problem

 ![Replication of a 5' end is a problem](image)

- Strategies to overcome problem of linear end
 a. Convert linear molecule into
 - Used by
 b. DNA may form an unusual structure at end =
 - Linear
 c. Have variable ends with
 - Telomers of
 d. Covalently link
 - Adenovirus,
2. Rolling circle replication
 - Sometimes use only
 - Nick produces
 - DNA pol uses
 - Newly synthesized strand
 - Can continue to
 - Usually get cleavage of a unit length =

- Examples of rolling circle replications
 a. Amplification of
 - need lot of
 - rDNA genes are
 - cell will excise an array and
 - Can replicate
b. Phage replication
 - After rolling circle replication,

 - $\phi X174 =$
 i. DNA enters
 ii. DNA replicates
 iii. Protein A encoded from

 iv. Protein A stays associated with the 5’ end

 v. As the replication fork reaches

 vi. Protein A
 vii. Protein A nicks
4. Conjugation mechanisms
 - During conjugation can get

 a. F plasmid
 - Classic episome =
 - 100 kB element that
 - Integration occurs via recombination between

 i. Free plasmid
 - uses its own ori (oriV)
 - is maintained

 ii. When integrated into host chromosome:
 - F system
 - F-DNA replicated
 - Presence of free or integrated F episome (F⁺ cell) has

 i. F⁺ cells can
 ii. F factor contains
 - required for
 iii. If F is plasmid =
 - can convert F⁻ cell

 iv. If F is integrated =

 - Usually only
 - Mating usually
- 33 kB of the F episome contains
- The Transfer region contains
 i. traA encodes pilin =
 - several
 - each pilis =
 ii. 12 other tra genes =
 iii. traS and traT =
 - prevents F$^+$ cell from
 iv. Other tra genes stabilize

- Pilis initiates conjugation,

- Phage use pili for

\[F^+ \text{ Cell}\]

\[F^\text{- Cell}\]
b. DNA transfer of autonomous F factor
 - Transfer of F factor
 - Starts when TraM protein
 - TraY binds
 - TraI (relaxase) nicks oriT and
 5’ end of the nick
 • also unwinds
 - Freed 5’ end with TraY/I

 - Complement of transferred strand is

 - Complementary strand also must be
 - Transfer of single strand into recipient
 - Transfer ceases once single unit of F factor reaches recipient cell =

c. DNA transfer of integrated F factor
 - When F is integrated,

 - Only part of F
 - Entire bacterial chromosome must

 - Conjugation usually stops
- Most common result =
- Single stranded transfer molecule
- Have region of homology to host chromosome =
- Cell with integrated F factor supports

5. Transferring bacterial genes to plants
 - Crown gall disease occurs when

 - Bacteria causes disease
 - Unusual infection =

 a. Properties of the Ti plasmid
 - Contains genes for
 - Only part of the plasmid
 i. genes to generate
 ii. genes for the
b. Plant cell transformation
- Requires 3 types
 i. *chvA*, *chvB*, and *pscA* = required for
 - Synthesize a poly-saccharide
 ii. *vir* region on Ti plasmid
 iii. T-DNA required

b. Plant cell transformation
- Requires 3 types
 i. *chvA*, *chvB*, and *pscA* = required for
 - Synthesize a poly-saccharide
 ii. *vir* region on Ti plasmid
 iii. T-DNA required

c. T-DNA transfer resembles bacterial conjugation
- Are 6 *vir* genes
- When *Agrobacterium* contacts plant cell =
 - *vir* genes produce products that cause
 i. Activation of *virA* and *virG* genes
 - VirA,G = regulators that
 - causes
 - VirA-PO$_4$
 - VirG-PO$_4$ binds to
ii. \textit{virB,C,D,E} responses
- T-DNA is flanked by
- \textit{virD} has 4 open reading frames =
 - 3’ end of nick is extended =
 - Old strand becomes coated in
 - T complex (with nuclear-localization signal in VirE2)
 - \textit{virB} operon encodes
iii. Integration of T-DNA into plant genome
 - single-stranded DNA
 - sometimes find

 - dsCircle can then

 - *Agrobacterium* used as a common vector

 - remove oncogenic genes from