A. Controlling Gene Expression using Regulatory RNAs:
 - Regulation by RNA uses
 - RNA can shift between one structure and another =
 - Changes in structure can be result
 - Secondary structure changes occur

1. Intramolecular mechanisms of regulation
 a. mRNA structure prevents translation
 - Translational regulation of
 - At one conformation of mRNA,
 - Second AUG may be blocked because
 - Ribosome movement
b. mRNA structure terminates transcription = Attenuation
 - Controls the ability

 - An attenuator =

 - Two events are possible:
 i. if stem/loop forms at attenuator =
 - downstream genes
 ii. if protein binds attenuator =
 - downstream genes

2. **Intermolecular mechanisms of regulation**
 - Small RNAs
 - Can have trans-acting RNA

 - Small RNA binding can:
 a. Change
 - Binding to one region
 - May mask
b. RNA binding may affect activator protein

- activator protein

- endonuclease

3. Types of regulator RNAs
 a. Regulator RNAs in bacteria
 - sRNA =
 - Some are general =
 - Example: oxyS =

 • can activate
 • represses flhA gene by

A 3’ terminal loop in oxyS RNA pairs with the initiation site of flhA mRNA
b. MicroRNAs in eukaryotes
- Are small (10-30 bases) RNAs

- Widespread mechanism:
- MicroRNAs can
- Binding causes
- Double-stranded RNA may
- Way of regulating some messages
3. RNA interference (2006 Nobel Prize in Physiology/Med)
 - MicroRNA/mRNA binding
 - Method to specifically
 - Experimentally introduce into cell
 - Double stranded RNA will be
 - Mechanism looks like
 - Many eukaryotic viruses are composed of
 - Great way to test

![RNA interference diagram](image)
B. Phage Strategies for Controlling Gene Expression:
 - Phage =
 - Are two “lifestypes” possible
 • Lytic =
 • Lysogenic =

 - Phage use different strategies

 - Not all phages

A phage may follow the lytic or lysogenic pathway

- Phage can sense

- Led to the first
C. Gene Cascades of Phage Lambda (\(\lambda\)):
- \(\lambda\) has both
- Circuit for lytic development
- When \(\lambda\) enters,
- Has
- If late genes get expressed =
- If Repressor gets expressed =

1. Gene sets
 a. Immediate-early genes
 - Has only
 i. \(N\) gene =
 - antitermination allows
 ii. \(cro\) gene
 - prevents synthesis of Repressor =
 - turns off
 - early genes
b. Delayed-early genes
 i. 2 replication genes =
 ii. 7 recombination genes
 - some needed
 - some needed
 iii. 3 regulator genes with opposing functions
 - \(cII\) and \(cIII\) =
 - \(Q\) = Antitermination factor

c. Late genes
 - 2 genes
 - 21 genes for heads and tails =
2. The lytic cycle
- Phage DNA enters as linear molecule,
- Immediate-early genes
 • \(N\) is expressed
 • \(cro\) is expressed
- N product (pN) allows antitermination=
 • \(N\) transcript
 • \(cro\) transcript
- All late genes transcribed
 • \(P_R^+\) expressed
 • when pQ made (as part of delayed-early extension from \(cro\)),

![Diagram](image-url)
3. Lysogeny is maintained by cI Repressor
 - Lytic cycle put in motion
 - Each also has an
 - Between $P_L O_L$ and $P_R O_R$ is
 - if cI Repressor binds
4. Other aspects of Repressor binding
 a. The operator regions of PL and PR have
 - Binding of cI at operator is cooperative =

 ![Diagram of Repressor protein and RNA polymerase binding](image)

b. Repressor binding is needed for cI transcription
 - Octomers of cI are
 - When bound as octomer
 • bends
 • facilitates
 - When bound as 12-mer
 • RNA pol
 - Autogenous circuit =

 ![Diagram of Repressors binding and transcription](image)
5. Establishing lysogeny
- When λ first enters host cell,
 - Thus, P_L and P_R are
 - N is
 - cro is
 a. cII
 - Classic activator protein
 - P_{RE} is
 - RNA pol
 - Once P_{RE} recognized =
 b. $cIII$
 - cII protein
 - $cIII$ helps
6. The Cro repressor is needed for the lytic cycle
 - Lysogeny is established when
 - Cro is produced
 - *cro* encodes
 - Cro is a dimer that binds to O_L and O_R
 - Cro has highest affinity for $O_R^3 =$
 - Cro can then bind to O_R^1 and O_R^2 with equal affinity (no cooperativity) =
 - By the time early genes are turned off,
7. Determining lytic or lysogenic pathways
 - Once infected,
 - The fate of the phage depends on

 a. Initial event in entering lysogenic phase =
 i. Cooperative
 ii. Shuts off
 iii. Starts up
b. Initial events entering lytic phase =
- Stops
- Leads to more
- cII and cIII quickly degrade =

c. cII is the critical switch
- If cII active =
- If cII inactive =

d. Stability of cII
- When bacteria growing well =
- Phage uses
8. Immunity
 - Occurs when λ is integrated into host genome =

 - Occurs because

9. Release from lysogeny
 - Recall that
 i. DNA binding
 -
 ii. Dimer binding
 - used for
 - When prophage undergoes damage

 - Get expression from