CLASS 1.3: 01/25/07
GENOME ORGANIZATION I

A. The Content of the Genome:

1. Terms used in genomic analyses
 a. Genome =
 b. Transcriptome =
 - Defined in terms of RNA molecules
 - Usually more RNAs than genes because of
 c. Proteome =
 - can be more than the transcriptome because of
 d. Interactome =

2. Mapping Genomes:
 a. Linkage maps
 - Make rough estimates about
 b. Restriction Maps
 - Linkage maps can be generated using
 - Restriction fragments more accurately measured
 c. Sequence maps:
 - Ultimate map based
 - Can now compare wildtype DNA with that
 - With current technology (computer algorithms) can identify
3. Polymorphisms
 - Originally identified because of multiple alleles at a locus =
 - Histocompatibility (HLA) antigens
 - Polymorphisms not limited
 - When restriction fragments and DNA sequences are compared =

 a. Type of polymorphisms:
 i. Single nucleotide polymorphism (SNP) = a change that is a single nucleotide when DNA sequence of alleles is compared
 ii. Restriction-fragment length polymorphism (RFLP) = a type of SNP that is located at a restriction enzyme recognition site
 - results in an altered fragment when the DNA is cut and displayed on a gel.
b. Polymorphisms as linkage markers
 - Can be identified
 - Can be used like any genetic marker

- SNPs and RFLPs occur very often in the genome =

- Each individual has a unique constellation of

 i.
 ii.

- Haplotype is the combination of polymorphisms
4. Genome sizes
 a. C value
 - Total amount of DNA in haploid genome =
 - Genomes range

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Species</th>
<th>Genome (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algae</td>
<td>Pyrenomas salina</td>
<td>6.6×10^5</td>
</tr>
<tr>
<td>Mycoplasma</td>
<td>M. pneumoniae</td>
<td>1.0×10^6</td>
</tr>
<tr>
<td>Bacterium</td>
<td>E. coli</td>
<td>4.2×10^6</td>
</tr>
<tr>
<td>Yeast</td>
<td>S. cerevisiae</td>
<td>1.3×10^7</td>
</tr>
<tr>
<td>Slime mold</td>
<td>D. discoideum</td>
<td>5.4×10^7</td>
</tr>
<tr>
<td>Nematode</td>
<td>C. elegans</td>
<td>8.0×10^7</td>
</tr>
<tr>
<td>Insect</td>
<td>D. melanogaster</td>
<td>1.8×10^8</td>
</tr>
<tr>
<td>Bird</td>
<td>G. domesticus</td>
<td>1.2×10^9</td>
</tr>
<tr>
<td>Amphibian</td>
<td>X. laevis</td>
<td>3.1×10^9</td>
</tr>
<tr>
<td>Mammal</td>
<td>H. sapiens</td>
<td>3.3×10^9</td>
</tr>
</tbody>
</table>

- Generally
- Not always
- **C-value paradox** = lack of direct correlation
Some amphibians have
- others have sizes
- Likely to need the same

b. Types of eukaryotic genomic sequences
 i. Non-repetitive
 -
 -
 ii. Moderately repetitive
 - multiple copies
 - can be members
 iii. Highly repetitive
 - found in
 -
 - often organized
 - satellite DNA =
 - minisatellite or minisatellite =
- Proportion of genome that is
- Much of the repetitive DNA =
- Because repetitive DNA has same/similar sequence,

c. Transposons
 - Can move
 - Can make
 - Often called selfish DNA =
 - Because they represent a repetitive DNA sequence =

 - Can be a
5. Identifying disease-causing genes
 - Often it is clear that disease

 - Can follow the mutant allele (disease-causing gene) through a pedigree and show

 - Problem is finding the

 - If you know what protein is altered or missing -

 - In the old days (5-10 years ago) had to establish strong linkage with disease and

 - Easier today

Example: Duchenne’s muscular dystrophy

- Affects
- Steps:
 a. Find region

b. Perform restriction analysis of DNA and look for DNA in patients that is missing or rearranged =
c. Perform a “zoo” blot to see if similar gene expressed in other mammals =

d. Use probe to screen cDNA library =

e. Conceptionally translate cDNA

f. Compare cDNA with genomic DNA

g. Sequence DNA of all DMD patients to

6. Not all DNA is found in the nucleus
 - First clues =
 - Non-Mendelian inheritance =

 - Occurs because gene controlling trait

 - In a fertilized zygote =

 - Examples =

 - Organelle DNA evolves at rate

 - Usually no

 - Using mit genome comparisons =
a. Mitochondrial genomes (mtDNA)
 - Small circular molecules =
 - Usually have several
 - Several 100
 - Mitochondrial genomes
 - Types of genes
 i. Components of the
 ii. Components of protein

 - Not all proteins that make up the mitochondria

<table>
<thead>
<tr>
<th>Species</th>
<th>Size (kb)</th>
<th>Protein-coding genes</th>
<th>RNA-coding genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td>19–100</td>
<td>8–14</td>
<td>10–28</td>
</tr>
<tr>
<td>Protists</td>
<td>6–100</td>
<td>3–62</td>
<td>2–29</td>
</tr>
<tr>
<td>Plants</td>
<td>186–366</td>
<td>27–34</td>
<td>21–30</td>
</tr>
<tr>
<td>Animals</td>
<td>16–17</td>
<td>13</td>
<td>4–24</td>
</tr>
</tbody>
</table>

b. Chloroplast genomes (ctDNA)
 - Circular molecules =
 - Multiple copies of DNA/organelle;

 - Types of genes:
 i. All rRNA and tRNA genes
 ii. Genes for 50-100 proteins
 - about 1/2 are needed for
 - others involved

<table>
<thead>
<tr>
<th>Genes</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA-coding</td>
<td></td>
</tr>
<tr>
<td>16S rRNA</td>
<td>1</td>
</tr>
<tr>
<td>23S rRNA</td>
<td>1</td>
</tr>
<tr>
<td>4.5S rRNA</td>
<td>1</td>
</tr>
<tr>
<td>5S rRNA</td>
<td>1</td>
</tr>
<tr>
<td>tRNA</td>
<td>30–32</td>
</tr>
<tr>
<td>Gene expression</td>
<td></td>
</tr>
<tr>
<td>r-proteins</td>
<td>20–21</td>
</tr>
<tr>
<td>RNA polymerase</td>
<td>3</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
</tr>
<tr>
<td>Chloroplast functions</td>
<td></td>
</tr>
<tr>
<td>Rubisco and thylakoids</td>
<td>31–32</td>
</tr>
<tr>
<td>NADH dehydrogenase</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>105–113</td>
</tr>
</tbody>
</table>
c. Organelles evolved by endosymbiosis
 - Sequence comparisons between mtDNA and ctDNA and contemporary bacteria

 - Organellar genomes have lost many genes =

 - Transfer of proteins encoded by nuclear genes

B. Genome sequences and gene numbers:
 1. Introduction
 - First genomes
 - Since then, technology has improved and

 - Check out www.genomanewsnetwork.org
 - Types of organisms being sequenced
 a. Medically and economically

 b. Evolutionarily relevant

 - Most useful information with current algorithms =
- Some generalizations are possible (Fig 5.3)
- Many organisms have more genes than
- Organisms with more genes usually have redundant copies =
- Number of gene families may
- Three Kingdoms of Life

2. Prokaryotic (bacterial) genomes
 - Most of the DNA
 - Good correlation between

 - Average gene size =

 - Types of bacteria
 a. Obligate parasites
 - Have smallest genomes

 - 1500-2700 genes
 - Missing many genes
 - Get their metabolic products
b. Free-living bacteria
 - Have genome sizes ranging
 - Smallest need
 - Largest (Nitrogen fixing bacteria) need
 - *E. coli* (middle) =
 - Most genes fall equally into 2 categories
 i. Involved in
 ii. Involved in

2. Archaea genomes
 - Separate
 - Have biological properties
 - gene expression apparatus
 - cell division
 - Have genome sizes

3. Eukaryotic genomes
 - Unicellular eukaryotic genomes are
 - Higher eukaryotes have more genes,