Problem 1 (10 Points) Consider the Turing machine defined by

\[Q = \{ q_0, q_1 \}, \text{(internal states)} \]
\[\Sigma = \{ a, b \}, \text{(input alphabet)} \]
\[\Gamma = \{ a, b, \square \}, \text{(tape alphabet)} \]
\[F = \{ q_1 \}, \text{(set of final states)} \]

with initial state \(q_0 \), input string on the tape \(aa \), and the transition function \(\delta: Q \times \Gamma \to Q \times \Gamma \times \{ L, R \} \) given by

\[\delta(q_0, a) = (q_0, b, R) \]
\[\delta(q_0, b) = (q_0, b, R) \]
\[\delta(q_0, \square) = (q_1, \square, L) \]

Draw the sequence of events showing the internal state, and the tape symbols at each step.

Problem 2 (10 Points) (a) Use dynamic programming to find the shortest path from node \(A \) to destination node \(H \). Please show the value function clearly. (b) Now, take the value function to be zero for all states, and then show the first iteration of value iteration.

Figure 1: Shortest Path Problem on a Labelled Digraph