Computational Complexity

TM representation

using a state diagram

\[
\begin{array}{c}
M \text{ accepts palindromes over } \{a,b\} \\
\text{upper path for processing } a, \text{ lower for } b \\
\text{check } aR a \text{ repeat, } (aR a)^n \text{ case in } q_9, \text{ odd accepted in } q_9, \text{ even length in } q, \text{ based on } \lambda.
\end{array}
\]

Computation of } M

<table>
<thead>
<tr>
<th>Length 0</th>
<th>Length 1</th>
<th>Length 2</th>
<th>Length 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, B, B</td>
<td>8, B, B</td>
<td>8, B, B</td>
<td>8, B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>8, B, B</td>
<td>8, B, B</td>
<td>8, B, B</td>
<td>8, B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>8, B, B</td>
<td>8, B, B</td>
<td>8, B, B</td>
<td>8, B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>8, B, B</td>
<td>8, B, B</td>
<td>8, B, B</td>
<td>8, B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
<tr>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
<td>+ B, B</td>
</tr>
</tbody>
</table>

\[\delta(q_8, x) = [q_8, y, L]\]
Time complexity (TC) of a TM M is a function $t_{TM} : N \rightarrow N$ s.t. $t_{TM}(n)$ is the maximum number of transitions processed by a computation of M when initiated with an input of length n.

Assumption: Computation terminates for every input string.

Example 1: $t_{TM}(0) = 1$, $t_{TM}(1) = 2$, $t_{TM}(2) = 6$, $t_{TM}(3) = 10$

t_{TM}(n) = \begin{cases} \frac{(n+2)(n+1)}{2} & n \geq 1 \\ 1 & n = 0 \end{cases}

Example 2: 2-tape TM^2:

$$
M' : \xrightarrow{1} \overbrace{[Bla(1), Bla(2)]}^{2} \xrightarrow{62} \overbrace{[Bla(3), Bla(4)]}^{94}
$$

$$
t_{TM}(n) = 3(n+1)+1
$$

Definition: A language L is accepted in deterministic time $f(n)$ if \exists a deterministic TM of any kind with $t_{TM}(n) \leq f(n)$ + $n \in N$.

E.g. for palindromes, acceptance time is $(n^2 + 3n + 3)/2$.

Linear Speedup: A machine accepting a language L can be "speed up" to a linear acceptance time by an arbitrary multiplicative factor.

Thus let M be a 1-tape TM, $k \geq 1$, that accept L with $t_{TM}(n) = f(n)$.

Then let N be a k-tape machine M that accepts L with $t_{TM}(n) \leq [f(n)] + 2n$ for any constant $c < n_0$.

Rate of Growth: *exact computability of a language is futile.

We need to represent "order" of complexity.

*rate of growth: intuitively, the most significant contributor e.g. $n^2 \sim n^2 + 5$.
Definition: Function \(f = O(g) \), if \(f \) is a positive constant \(c \) and a natural \(n_0 \) so that
\[
\exists c, n_0 \in \mathbb{R}^+ : \forall n > n_0 \quad f(n) \leq c \cdot g(n)
\]
\(f = \text{big-O of } g \)

\(f = O(g) \) if
\[f(n) \leq c \cdot g(n) \quad \forall n > n_1, \text{ and} \]
\[g(n) \leq c_2 \cdot f(n) \quad \forall n > n_2 \]

\(\Rightarrow \) \[\frac{f(n)}{c} \leq g(n) \leq c_2 \cdot f(n) \quad \text{and} \]
\[g(n) / c_2 \leq f(n) \leq c \cdot g(n) \]

\(\exists \) \[f(n) = n^2 + 2n + 5 \quad \text{and} \quad g(n) = n^2 \]

We see that \(n^2 \leq n^2 + 2n + 5 \), hence \(c = 1 \), \(n_0 = 0 \)

\[2n \leq 2n^2 \quad \text{and} \quad 5 \leq 5n^2 \quad \forall n > 1 \]

Then \(f(n) \leq n^2 + 2n + 5 \)
\[\leq n^2 + 2n^2 + 5n^2 \]
\[= 8n^2 \]
\[= 8 \cdot g(n) \quad \text{for } n > 1 \]

\(\exists \) \[f(n) = n^2, \quad g(n) = n^3, \quad f = O(g) \], \(g \neq O(f) \)

Clearly \(n^2 = O(n^3) \), i.e. \(n^2 \leq n^3 \).

For \(\text{and } g \neq O(f) \)

Assume \(n^3 = O(n^2) \), then \(\exists c, n > n_0 \)

\[n^3 \leq c \cdot n^2 \quad \forall n > n_0 \]

Choose \(n_1 = \max \{ n_0 + 1, c + 1 \} \), then

\[n_1^2 = n_1 \cdot n_1 > c \cdot n_1^2 \quad \text{and} \quad n_1 > n_0 \]

i.e. a contradiction.

Polynomial 1/ integral coefficients (of degree)

\[f(n) = c_0 \cdot n^0 + c_1 \cdot n^1 + \ldots + c_m \cdot n^m \]

Rate of growth of \(f(n) \) is defined to be \(\max \{ m, \frac{n^m}{k} \} \).

May be a polynomial of degree \(R \), i.e.,

\(f = O(n^R) \)

\(\exists \) \[m_1 = O(0) \quad \text{and} \quad f = O(n^R) \quad \text{and} \quad k > n \]

\(\exists \) \[f \neq O(n^k) \quad \forall k < n \]
"Number theoretic" logarithmic \(f(n) = \lfloor \log_a(n) \rfloor \)

\[\log_a(n) = \log_b(n) \log_b(l) \]

\(a, b \) cont.

\[\text{independent of base.} \]

A big O hierarchy

\[\begin{align*}
O(1) & \quad \text{constant} \\
O(\log_a(n)) & \quad \text{logarithmic} \\
O(n) & \quad \text{linear} \\
O(n \log_a(n)) & \quad \text{logarithmic} \\
O(n^2) & \quad \text{quadratic} \\
O(n^3) & \quad \text{cubic} \\
O(n^k) & \quad \text{polynomial} k > 0 \\
O(b^n) & \quad \text{exponential} b > 1 \\
O(n!) & \quad \text{factorial}
\end{align*} \]

Non-deterministic Complexity

Design: same as deterministic (using any choice of transition)

\[\begin{align*}
& \text{2-type non-d deterministic accepting TM} \\
& \text{Ex: } \begin{cases}
[\text{a}\text{R,BL}\text{R}] & [\text{b}\text{R,BL}\text{R}] \\
[\text{a}\text{R,BL}\text{L}] & [\text{b}\text{R,BL}\text{R}] \\
[\text{B}\text{B}\text{R,BL}\text{R}] & [\text{B}\text{B}\text{R,BL}\text{L}] \\
[\text{B}\text{B}\text{L,BL}\text{L}] & [\text{B}\text{B}\text{R,BL}\text{R}] \\
[\text{B}\text{B}\text{L,BL}\text{L}] & [\text{B}\text{B}\text{L,BL}\text{L}] \\
[\text{B}\text{B}\text{R,BL}\text{R}] & [\text{B}\text{B}\text{L,BL}\text{L}] \\
[\text{B}\text{B}\text{L,BL}\text{L}] & [\text{B}\text{B}\text{L,BL}\text{L}] \\
[\text{B}\text{B}\text{R,BL}\text{R}] & [\text{B}\text{B}\text{L,BL}\text{L}] \\
\text{t}_{\text{tm}}(n) = n+1
\end{cases}
\end{align*} \]

Space Complexity: let \(M \) be a \(k \)-tape \(TM \). Space complexity of \(M \) is a \(\text{by } n \) \(\text{SCM} : n \rightarrow n \) at. \(\text{scm}(n) \) is the maximum number of squares read on tape 1...k by a computation of \(M \) when initiated with an input string of length \(n \).

Theorem: \(\text{\# of work tape} \)

\[\begin{align*}
& \text{tape 1} \\
& \text{tape 2} \\
& \text{tape 3}
\end{align*} \]

Theorem: \(\text{\# of work tape} \)
Theorem: Let M be a k-tape TM with $t_{TM}(n) = O(n^k)$. Then $S_{TM}(n) \leq (k-1) \cdot f(n)$.

If $S_{TM}(n) = O(n^k)$, then $t_{TM}(n) \leq C \cdot n^k$, where C depends upon M.

Let M be a TM with $t_{TM}(n) \leq C \cdot n^k$, where C depends upon M. Then $S_{TM}(n) \leq C \cdot n^k$.

Tractable problems: \exists a TM with polynomially bounded computational complexity.

Definition: A language L is decidable in polynomial time if L is a TM that accepts L with $t_{TM} = O(n^k)$, where C is independent of n.

Theorem: The class NP: non-deterministic polynomial time.

Definition: NP is the family of all these L as P.

Definition: NP is the family of all these L as P.

Definition: NP is the family of all these L as P.

Definition: NP is the family of all these L as P.

Definition: NP is the family of all these L as P.

Definition: NP is the family of all these L as P.

Definition: NP is the family of all these L as P.

Definition: NP is the family of all these L as P.

Definition: NP is the family of all these L as P.

Theorem: $P \subseteq NP$ (i.e., every NP language is also in P).

Theorem: It is believed that $P \neq NP$.

Theorem: Let Q and L be languages over Σ_1 and Σ_2, respectively. Q is reducible to L in polynomial time if Q is a poly-time computable function f that maps elements of Σ_1^* to elements of Σ_2^* such that $f(q) \in L$.

Theorem: Let Q and L be languages over Σ_1 and Σ_2, respectively. If $Q \in NP$, then $Q \subseteq L$.

Definition: A language L is called NP-hard if for every $Q \in NP$, Q is reducible to L in polynomial time. An NP-hard language that is also in NP is called NP-complete.

Theorem: If there is an NP-complete language that is also in P,

Then $P = NP$.