Equivalence of DFA and NFA:

Definition:

\[M_1 \equiv M_2 \text{ if } L(M_1) = L(M_2) \]

Let \[L(M_1) = L(M_2) \]

\[\{ (10)^n : n \geq 0 \} \]

DFA is a restricted kind of NFA.

\[L(DFA) \subseteq L(NFA) \]

We can also convert an NFA into a DFA.

The technique is:

For an NFA \(\delta \), \(\delta^*(q_i, \omega) = \{ q_j : j \in S \} \)

create a new state \(\{ q_j : j \in S \} \) for all \(q_i \).

Example: Convert to a DFA

1) Initial state of DFA will be \(\{ q_0 \} \) too.
2) After reading a, NFA will be in \(\{ q_1, q_2 \} \)
 \(\delta_\text{NFA}(\{ q_0, q_3 \}, a) = \{ q_1, q_2 \} \)
 Call \(\{ q_1, q_2 \} \) another state for the DFA.
3) \(\delta_\text{DFA}(\{ q_0, q_3 \}, b) = \emptyset \), call this another state also
 make this a non-final trap state.
4) Study NFA for \(\{ q_1, q_2 \} \) state, ... we see
 \(\delta_\text{NFA}(\{ q_1, q_2 \}, a) = \{ q_1, q_2 \} \) and
 \(\delta_\text{NFA}(\{ q_1, q_2 \}, b) = \{ q_3 \} \)

DFA:

\[\{ q_0 \} \]

\[\{ q_1, q_2 \} \]

\(\delta_\text{DFA}(q_0, a) = \{ q_1, q_2 \} \)

\(\delta_\text{DFA}(q_0, b) = \emptyset \)

\(\delta_\text{DFA}(q_1, a) = \{ q_1, q_2 \} \)

\(\delta_\text{DFA}(q_1, b) = \{ q_3 \} \)

\(\delta_\text{DFA}(q_2, a) = \{ q_1, q_2 \} \)

\(\delta_\text{DFA}(q_2, b) = \{ q_3 \} \)

\(\delta_\text{DFA}(q_3, a) = \emptyset \)

\(\delta_\text{DFA}(q_3, b) = \{ q_3 \} \)
Deterministic Finite Automata (DFA)

Input alphabet \(\{0, 1\} \)

DFA defined by \(M = (Q, \Sigma, \delta, q_0, F) \)

\[Q = \{q_0, q_1, q_2\} \] initial states

\[\Sigma = \{0, 1\} \] input alphabet

\[\delta : Q \times \Sigma \to Q \] transition function

\[\delta(q_0, 0) = q_0 \]

\[\delta(q_0, 1) = q_1 \]

\[\delta(q_1, 0) = q_1 \]

\[\delta(q_1, 1) = q_2 \]

\[\delta(q_2, 0) = q_2 \]

\[\delta(q_2, 1) = q_3 \]

\[F = \{q_3\} \] final state set

This DFA accepts strings 01, 101, 0111, 1100, etc.

doesn't accept 00, 100, 1100, etc.

Extended transition function

\[\delta^* : Q \times \Sigma^* \to Q \]

\[\delta^*(q_0, 1) = q_0 \]

\[\delta^*(q_1, 10) = q_2 \]

\[\delta^*(q_2, 100) = q_3 \]

\[\delta^*(q_3, 0) = q_3 \]

Recursive definition:

\[\delta^*(q, \varepsilon) = q \]

\[\delta^*(q, w) = \delta(\delta^*(q, w), a) \]

Language accepted by DFA \(M \) is the set of strings accepted.

\[L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \} \]
Regular language a language s.t.
\[L = L(M) \] accepted by a DFA \(M \).

Non deterministic finite accepter (NFA)

\[\mathcal{N} = (Q, \Sigma, \delta, q_0, F) \]

\[\delta: Q \times (\Sigma \cup \{ \epsilon \}) \rightarrow 2^Q \]

\[\delta(q_0, a) = \{ q_1, q_2 \} \]

Extended transition function is a set

\[\delta^*(q_0, w) = \varnothing \]

\[\delta^*(q_1, a) = \{ q_0, q_1, q_2 \} \]

Language accepted by NFA

If there is a "walk" labeling \(w \) then it \(N \) to

final state

\[L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \cap F \neq \varnothing \} \]

NFA can also have a state with no outgoing edge for some input (dead configuration)

e.g., we might have

\[\delta^*(q_0, 110) = \varnothing \]

Why non-determinism?

ex. (a) For backtracking (car in a maze game)

\[L(\overline{M}) = L(M) \cup L(M^\epsilon) \]

ex. (b) effectively, DFA and NFA are equivalent, so for ease whenever possible.
with state for DFA

\[Q_0 = \{ q_0, q_2 \} \]

\[\delta (q_0, a) = \{ q_1, q_2 \} \]

\[\delta (q_2, b) = \phi \]

\[\delta (q_2, a) = \{ q_1, q_2 \} \cup \delta (q_2, a) \]

\[= \{ q_1, q_2 \} \cup \{ q_2 \} \]

\[= \{ q_0, q_2 \} \]

\[\delta (q_0, a) = \{ q_1, q_2 \} \]

\[= \{ q_2 \} \cup \{ q_2 \} \]

\[= \{ q_2 \} \cup \{ q_2 \} = \{ q_0 \} \]
Reduction of the \# of states in F.A.

Any D.F.A. defines a unique language but the converse is not true. You can have more than one D.F.A. for the same language, we need for state reduction (for simplicity and efficiency).

Definition: Two states \(p \) and \(q \) of a D.F.A. are indistinguishable if

\[
\delta^*(p, w) \in F \implies \delta^*(q, w) \in F
\]

and

\[
\delta^*(p, w) \notin F \implies \delta^*(q, w) \notin F
\]

\[\forall w \in \Sigma^* \]

\[q \iff \exists w \in \Sigma^* \text{ s.t.} \]

\[
\delta^*(p, w) \in F \text{ and } \delta^*(q, w) \notin F \text{ or vice versa}
\]

New \(p \equiv q \) are distinguishable by \(w \).

Indistinguishability is an equivalence relation i.e.

If \(\delta(p, x) = \delta(q, x) \) then \(p \equiv q \) for \(x \in \Sigma \).

Reduce states by finding + combining I states.

Algorithm (Mark), 1) remove all unaccessible states (exhaustive approach)

2) Consider all pairs of states \(\langle p, q \rangle \), if \(p \not\in F \) and \(q \not\in F \)

(or vice versa) mark the pair \(\langle p, q \rangle \) as distinguishable.

3) Repeat till no previously unmarked pairs are marked.

(\(\delta \) (p, q) true and all \(a \in \Sigma \), compute \(\delta(p, a) = \delta(q, a) \).

\(\delta(p, a) = \delta(q, a) \).

\(\delta(p, a) \) i.e. the pair \(\langle p, q \rangle \) is marked as distinguishable then mark \(\langle p, q \rangle \) as distinguishable.

Reduce -- partition the state set \(Q \) into disjoint subsets \(\{B_i, B_2, \ldots, B_k\}, i \in \{1, 2, \ldots, k\}, f \not\in B_i \) occurs in only one set + elements in each set are indistinguishable + any 2 elements from any set are distinguishable.

(exercise 11)

Given D.F.A. \(M = (Q, \Sigma, \delta, s_0, F) \) create \(M' = (Q', \Sigma, \delta', s_0', F') \)
1. For each set \(\{8_i, 9_i, \ldots, 9_k\} \) create a state labeled \(c_{ij} \) for \(M \).
2. For each \(\delta(8_i, a) = 8_p \) of \(M \), find sets to which \(8_i \) and \(8_p \) belong and add:
 \[\hat{\delta}(c_{ij} \cdot k, a) = \text{lem} \ldots n \quad \text{if} \quad 8_i \in \{8_i, 9_i, \ldots, 9_k\} \quad 8_p \in \{8_i, 9_i, \ldots, 9_k\} \]
3. \(\hat{s}_0 \) is the state of \(\hat{M} \) that includes 0.
4. \(\hat{F} \) is the set of all states whose label contains \(c \) s.t.
 \[\hat{s}_0 \in \hat{F} \]

\[\hat{M} \text{ is minimal s.t.} \]

\[L(\hat{M}) = L(M) \]

and \(\hat{M} \) contains the minimum number of states.
Regular Expressions

1. Let \(\Sigma \) be a given alphabet, then
2. \(\emptyset, \Sigma, \text{ and } a \in \Sigma \) are all regular expressions (R.E)
3. If \(\alpha \) and \(\beta \) are R.E, then \(\alpha + \beta, \alpha \beta, \alpha^* \) and \(\alpha^\dagger \) are R.E
4. A string is a R.E if derivable by finite application of 2).
5. Show \((a+b.c)^* . (c+\emptyset)\) for \(\Sigma = \{a,b,c\} \) R.E

Language of Regular Expressions

- \(L(\emptyset) = \emptyset \) is the empty set.
- \(L(\Sigma) \) is the set of all symbols in \(\Sigma \).
- \(L(a) = \{a\} \) is a singleton set.
- \(L(\emptyset) \) is the empty set.
- \(L(\Sigma) \) is the set of all symbols in \(\Sigma \).
- \(L(a^*) \) is the set of all strings over \(\Sigma \) that can be formed using the symbol \(a \).
- \(L(a^\dagger) \) is the set of all strings over \(\Sigma \) that can be formed using the symbol \(a \).

Regular Expressions => Regular Languages

If \(R \) is a regular expression, then \(\exists \) some NFA for \(L(R) \) such that \(L(R) \) is a regular language.
Find NFA accepting $L(x)$ for $x = \text{a} + \text{b}(\text{a} + \text{b})^* (\text{a}^* + \text{a})$

M_1 for $L(a+b)$

M_2 for $L(\text{b}a^*+\text{a})$

M for $L((a+b)(\text{b}a^*+\text{a}))$

Regular expressions for regular languages. ($R \in \Sigma^* \iff L(R)$)

Regular Expressions for Regular Languages:

$R \in \Sigma^*$

$R = a^* + a(a+b)c^*$

General transition graph

- Removing a non-starting and non-final state

$R = \text{a} \cdot \text{e} \cdot \text{d} \cdot \text{c} \cdot \text{e} \cdot \text{b}$

- General and use with

$L_1 = \lambda_1 \text{a} \cdot \lambda_2 \text{a}^* (\lambda_4 + \lambda_3 \lambda_1 \lambda_2)^*$

$R = (b + \text{a} \cdot \text{b} \cdot \text{a}^*) \text{a} \cdot \text{b} \cdot \text{b} (\text{a} \cdot \text{b})^*$

Regular expression for some pattern e.g. phone numbers, email addresses, etc.
Regular Grammars

- Grammar $G = (V, T, S, P)$ is right-linear if all rules have the form:

 $A \rightarrow xB$

 $A \rightarrow x$

 $A, B \in V$, $x \in T^*$

- Left-linear

 $A \rightarrow Bx$

 $A \rightarrow x$

- Regular grammar is either right-linear or left-linear

- Linear grammar is:

 $S \rightarrow A$

 $A \rightarrow aB|\lambda$

 $B \rightarrow A$

Right-linear grammars generate regular languages \textit{d v i e r v a i n a}

Production rule $D \rightarrow DE$

- $ab \cdots CD \Rightarrow ab \cdots cdE$

- ab by left-linear grammar