Existence of Solutions

(E) \(\dot{x} = f(t, x) \)

Problem: To find a differentiable function \(\varphi \) defined on a real \(t \) interval \(I \) such that

(i) \((t, \varphi(t)) \in D \quad (t \in I)\) \[D \text{ is a domain, i.e., an open and connected set in the real } (t,x) \text{ plane.} \]

(ii) \(\dot{\varphi}(t) = f(t, \varphi(t)) \quad (t \in I) \)

If such an interval \(I \) exists and function \(\varphi \) exists, then \(\varphi \) is called a solution of the differential equation (E) on \(I \). If \(\varphi \) is a sol'n of (E) then \(\varphi \in C^1_I \).

(IVP) Initial Value Problem. To find an interval \(I \) containing \(2 \) and a solution \(\varphi \) of (E) on \(I \) satisfying \(\varphi(2) = 2 \).

We can solve IVP by solving (by Fundamental Theorem of Calculus)

\[\varphi(t) = 2 + \int_2^t f(s, \varphi(s)) \, ds \quad (t \in I) \]

If \(f \) is continuous on \(I \), then (E) \(\equiv \) (IE).

Differential Equations with Discontinuous Right Hand Side

Case 1: \(\dot{x} = \text{sgn}(x) \)

For \(t < 0 \), \(x = -1 \), \(x(t) = -t + c_1 \)

For \(t > 0 \), \(x = 1 \), \(x(t) = t + c_2 \)

For solution continuity at \(t = 0 \)

\[x(0) = \lim_{t \to 0} (-t + c_1) = x(t + c_1) \]

\[t \to 0 \]

\[x(0) = c_1 = c_2 \]

\[x(t) = t + c \]

For \(t = 0 \), \(\dot{x}(t) \) doesn't exist.
\[x = 1 - 2 \sin(x) \]

For \(x < 0 \), \(x = 3 \), \(x(t) = 3t + c_1 \)

For \(x > 0 \), \(x = -1 \), \(x(t) = -t + c_2 \)

If we set \(x = 0 \) as a solution after a trajectory hits zero, then \(1 - 2 \sin(0) = 1 \neq 0 \)

- For cases where \(f(t,x) \) is continuous in \(x \) and discontinuous in \(t \), we can just use mathematical argument to generalize the solution. (Controversy: solution)

- For \(f(t,x) \) discontinuous in \(t \), needs some limiting for using some physical meaning into account.

- Generalization of solution concept (Requirement):

 1. The solution concept should be valid for \(f(t,x) \) with \(f \in C \).
 2. For \(x = f(t) \), it should turn out to be \(x(t) = \int f(t) \, dt + c \) only.
 3. Under any initial data \(x(0) = x_0 \) in a given region of the solution must exist (at least for \(t \geq 0 \)) and continue to the boundary of this region or to infinity \(c \in (h,x) \to \infty \).
 4. The def of solution should work for many physical systems, moreover...
 5. The limit of a uniformly convergent sequence of solutions must be a solution.
 6. Under the commonly used change of variables a role must remain a role.

References:

1. Differential Equation with Discontinuous Right-hand Sides, A. F. Filippov
Caratheodory conditions: In the domain D of the (t,x) space,

1. $f(t,x)$ be defined and continuous in x for almost all t;
 (except in a set of measure 0).

2. $f(x,t)$ be measurable in t for each x.

3. $|f(t,x)| \leq m(t)$, $m(t)$ is a summable
 function on each finite interval t in D if t is not bounded in D.
 or $m(t)$ is a Lebesgue integrable function.

$L = f(t,x) \in \mathbb{R}^n$, and $f(t,x)$ satisfies 1-3

is called the Caratheodory Equation.

(deduction of the Caratheodory Equation)

Problem: To find an absolutely continuous ϕ, defined on
a real t interval I, such that $\phi(t) \in \mathbb{R}^n$ for $t \in I$.

(i) $\phi(t)$ is a continuous function defined on I.

(ii) $\phi(t) = f(t, \phi(t))$, for all $t \in I$ except on a
 set of Lebesgue measure zero.

Discontinuous Right Hand Side:

Defn: Piecewise continuous function in a finite domain G of an
$(n+1)$ dimensional (t,x) space if the domain G consists of
a finite # of domains $G_i (i = 1, \ldots, l)$ in each of which
the function is continuous up to the boundary, and of a
set M of measure zero which consist of boundary point
of these domains.

Continuous up to the boundary: means the $f(t)$ has a
finite limit at the boundary.
Most common example of \(M \) (finite \# of hypersurfaces or manifolds).

In an \(n \)-dimensional space, a set \(S \) is called a \(k \)-dimensional hypersurface or manifold if \(\forall \) \(x \) in the neighborhood of each of its points \(a \), all \(k \) coordinates of the points of the set \(S \) are continuous functions of some \(k \) coordinates varying over a certain \(k \)-dimensional domain \(C^k(a) \). E.g.

\[
x_i = \phi_i(x_1, \ldots, x_k) \in C^k, i = 1, \ldots, m, \quad (x_i, \ldots, x_k) \in C^k(a)
\]

Hyperplanes of class \(C^0 \) indicate \(M \), with \(\phi_i \) being \(C^0 \).

If \(\phi_i \) are called smooth, \(\phi_i \) being \(C^\infty \).

One-dimensional example:

Take \(f_+(x_0) \) and \(f_-(x_0) \)

(i) \(f_+ \) and \(f_- \) point towards \(S_+ \)

Contradiction interpretation is sufficient.

(ii) \(f_+ \) and \(f_- \) towards \(S_- \)

Contradiction is sufficient.

(iii) \(x_0 \) not to be loaded.

For \(x_0 \) as the initial condition, two solutions possible.

(iv) \(f_+ \) points inside \(S_+ \) and \(f_- \) outside \(S_- \)

Contradiction doesn't work.

Solution concept: \(\dot{x} = f(t, x) \) \(\ominus 1 \)

where \(f \in \text{PWC in domain } \Omega, \ x \in \mathbb{R}^n \), \(\Omega \) a set of (of measure 0)

of points of discontinuities of \(f \).

Define a set-valued function \(F(t, x) \) as follows (on domain \(\Omega \),

If \(f \) at a point \((t, x) \), \(f \) is continuous, then \(F(t, x) = \{ f(t, x) \} \)

For other \(\tilde{x} \) of \(\Omega \), create \(F(t, x) \) from \(f(t, x) \).
Solution of 1. in terms of
\[\dot{z} \in F(z(t)) \text{ almost everywhere.} \]
Absolutely continuous vector valued for \(z(t) \) defined on an interval I.

\[\dot{z} \in F(z(t)) \]

1. Convex Hull

\[\text{Convex Hull} \quad x_0 \quad x^+ \quad x^- \quad \text{convex hull} \]

\[0 = \alpha b^+ + (1-\alpha)b^- \text{ on the tangent space of } S_0. \]

2. Equivalent Control Method: \(f \) of the form \(f(x, u(x)) \)

\[u(x) \text{ is single valued on } S^+ \cup S^- \text{ but has a range of values } U(x) \text{ for } x \in S_0. \]

We seek \(u_c(x) \) for \(x \in S_0 \) s.t. \(f(x, u_c(x)) \) is tangent to \(S_0 \) and \(u_c(x) \in U(x) \).

3. \(\dot{x} = f(x, u_c(x)) \), \(u_c(x) \in U(x) \) \{ \(= U(x) \), \(x \in S^+ \cup S^- \) \}

\[F(x_0); \text{smallest convex set containing } \{(f(x_0, u) \mid u \in U(x))\} \]

\[\text{use } \dot{x} \in F(x(t)) \]

If \(f(x, u) \) depends affinely on \(u \) and \(U(x_0) \) is \([u_-, u_+] \)

\[\dot{u}_+ = \frac{d}{dx} x_{s+} \quad \quad \dot{u}_- = \frac{d}{dx} x_{s-} \quad x \to x_0 \]

\[\text{eq.} \quad \text{are equivalent:} \]

Define \[g_u(x) = \begin{cases} +1 & x > 0 \\ -1 & x < 0 \\ \epsilon & x = 0 \end{cases} \]

\[f(x, u) = \frac{1}{2} (1+u) b^+ (x) + \frac{1}{2} (1-u) b^- (x) \]

\[\dot{x}_1 = \cos(\theta u), \quad \dot{x}_2 = -\sin(\theta u), \quad y = x_2, \quad u = \sin y \]

or \[\dot{x}_1 = \cos(\theta \sin(x_2)), \quad \dot{x}_2 = -\sin(\theta \sin(x_2)) \]

for \(x_2 > 0 \), \(\dot{x}_1 = \cos \theta \), \(\dot{x}_2 = -\sin \theta \)

for \(x_2 < 0 \), \(\dot{x}_1 = \cos \theta \), \(\dot{x}_2 = \sin \theta \)

Sliding mode on \(x_1 = 0 \)

for \(\dot{x}_1 = 0 \), \(\dot{x}_2 = 0 \)

\[u_c = 0 \Rightarrow \dot{x}_1 = 1 \]
\[
\begin{bmatrix}
\cos \theta \\
-\sin \theta
\end{bmatrix}, \quad \beta = \begin{bmatrix}
\cos \theta \\
\omega^2 \beta
\end{bmatrix}
\]

We need \(\beta_0 = \alpha \beta^+ + (1-\alpha) \beta^- \), \(\alpha + \beta \neq 0 \)

Take \(\beta \approx \frac{1}{2} \)

and we get \(\dot{\beta} = \cos \theta \)

Mind definition gives
\(\dot{\beta} \in [\cos \theta, 1] \)

Approximate models

1. Continuous
 \(\dot{x}_1 = \cos(\theta \tanh(x_2/\epsilon)), \quad \dot{x}_2 = -\sin(\theta \tanh(x_2/\epsilon)) \)

 Outside a narrow band around switching surface, similar trajectories. On \(S_0 \), \(x_1(+) + C \cdot x_2(+) = 0 \)

 \(\implies \dot{x}_1 = 1 \) same as equivalent control.

2. Approximated
 \(I = \sin h, \quad I_{x_1} = \cos \theta + C \cdot \sin \theta \)

 \(\dot{x}_1 = \cos \theta \) (simpler convex definition)

3. \(\dot{x}_1 = \cos \theta, \quad \dot{x}_2 = -\tanh(x_2(\epsilon)) \sin \theta \)

 \(\epsilon \approx \epsilon(\theta) > 0 \)

4. \(\dot{x}_1 = \cos \theta, \quad \dot{x}_2 = -\sin \theta, \quad \epsilon \approx \epsilon(\theta) > 0 \)

 Smooth approximations of \(\beta \) is slightly.

 Also gives \(\dot{x}_1 = \cos \theta \) on \(S_0 \)
\[x_1(t) = -x_1(t) + x_2(t) - u(t) \]
\[x_2(t) = 2x_2(t) (u^2(t) - u(t) - 1) \]
\[u(t) = \text{sfun} x_1(t) \]

Sliding mode at \(x_1 = 0 \), \(-1 \leq x_2 \leq 1\).

Convex def. gives the sliding dynamics as \(\dot{x}_2 = -2x_2^2 \rightarrow \) has an unstable equil. at \((0,0)\)

Equivalent center
\[\dot{x}_2 = 2x_2(x_2^2 - x_2 - 1) \rightarrow 2 \text{ equilibria} \]

(\(\frac{1}{2} - \frac{1}{4}\sqrt{5} \)) is unstable
\(x(0) \) is stable

Simplified
\[u = \tanh(x/\delta) \]

EFF (evelflow formula) for eq. controllability
\[\dot{x} = f(x,u), \quad y = g(x) \]
\[\begin{cases}
 y > 0, & u = u_+(x) \\
 y < 0, & u = u_-(x) \\
 y = 0, & u_-(x) \leq u \leq u_+(x)
\end{cases} \]

For convex
\[\dot{x} = \frac{1}{2}(1+u) f_+(x) + \frac{1}{2}(1-u) f_-(x), \quad y = g(x) \]
\[\begin{cases}
 y > 0, & u > 1 \\
 y < 0, & u < 1 \\
 y = 0, & -1 \leq u \leq 1
\end{cases} \]

... these mode...