Problem 1: (10 points) (a) Find the decimal for the four-bit two’s complement number 1101
(b) Convert \(\frac{202}{3} \) to decimal

Problem 2: (10 points) (a) Design a circuit that implements the following function using AND, OR and NOT gates.
\[f = A(BC + \bar{B}D) + B(CD + E) \]
(b) Use a 4-to-1 MUX to design the same circuit.

Problem 3: (10 points) Consider a function \(F(A, B, C, D) \) that takes the value 1 if and only if the number of 1’s in \(B \) and \(C \) is greater than or equal to those in \(A \) and \(D \).
(a) Write the truth table for the function.
(b) Use an 8-to-1 multiplexer to implement \(F \).

Problem 4: (10 points) Design a FSM that outputs a 1 when the last three inputs are 100 or 001. Show the FSM and the state table. Design and show the circuit that implements the design.