1. Rectangular Pulse

- The Fourier transform of \(x(t) \) is given in problem 1.13 on page 25 of the Schaum text:

\[
X(\omega) = 2\frac{\sin(a\omega)}{\omega}
\]

Another way of solving this problem is to recognize the rectangular pulse function as a sum of two unit step functions: \(x(t) = u(t+a) - u(t-a) \). Utilizing the addition and time-shifting properties of the Fourier transform, we can write the Fourier transform of \(x(t) \):

\[
X(\omega) = \left(\pi\delta(\omega) + \frac{1}{j\omega} \right)e^{j\omega a} - \left(\pi\delta(\omega) + \frac{1}{j\omega} \right)e^{-j\omega a}
\]

\[
= \left(\pi\delta(\omega) + \frac{1}{j\omega} \right)\left(e^{j\omega a} - e^{-j\omega a}\right)
\]

\[
= \left(\pi\delta(\omega) + \frac{1}{j\omega} \right) \cdot 2j \sin(\omega a)
\]

Since \(\sin(\omega a) = 0 \) at \(\omega = 0 \),

\[
= \frac{1}{j\omega} \cdot 2j \sin(\omega a) = 2\frac{\sin(a\omega)}{\omega}
\]

- The energy spectral density is given by \(ESD = |X(\omega)|^2 \), which in this case (since \(X(\omega) \) is real) becomes simply \(X^2(\omega) \), or

\[
ESD = 4\frac{\sin^2(a\omega)}{\omega^2}
\]

- Because \(x(t) \) is an energy signal and finite in duration, its power spectral density is equal to zero. See Lathi p.23 and Schaum pp.7-8.

2. Because the LTI system is an ideal low-pass filter (LPF) whose bandwidth \(W \) is greater than the bandwidth of the signal \(x(t) \), the output power of \(x(t) \), \(S_{x_o} \), is equal to the input power, \(S_{x_i} \). Given the power spectral density of the noise as \(k \) and the bandwidth of the LPF, we can calculate the output power of the noise signal by

\[
S_{n_o} = \frac{1}{2\pi} \int_{-W}^{W} k\partial\omega = \frac{kW}{\pi}
\]

Therefore, the signal-to-noise ratio of the system is given by

\[
SNR = \frac{S_{x_o}}{S_{n_o}} = \frac{S_{x_i} \cdot \pi}{kW}
\]

By inspection the bandwidth of the output signal is equal to \(W \) because the noise is equally distributed throughout all frequencies (as evidenced by its constant power spectral density of \(k \)), which is limited at the output by the LPF to \(W \).

3. Properties of the Dirac Delta distribution

- The solution to a) is found in the Schaum text in Problem 1.6a) on p.21
- The solution to b) is found in the Schaum text in Problem 1.7a) on p.21

4. This solution is found in the Schaum text in Problem 1.34 on pp.33-34

5. This solution is found in the Schaum text in Problem 1.43 on p.37