1. Plot the signals
 \[x(t) = (t + 1)[u(t + 1) - u(t)] + [u(t) - u(t - 1)] + 2[u(t - 1) - u(t - 2)] \]
 and
 \[x(t)u(1-t) \] (10 points)

2. Determine whether the following signals are energy signals or power or neither (10 points)
 a. \[x(t) = e^{-at}u(t), a > 0 \]
 b. \[x(t) = \sin(\omega_0 t + \theta) \]

3. Verify the following (5 points)
 \[\delta(t) = \frac{du(t)}{dt} \]

4. Evaluate the following (10 points)
 a. \[\int_{-\infty}^{\infty} \sin^2 \left(t + \frac{\pi}{2} \right) u(t - 1) \delta(t) dt \]
 b. \[\int_{-\infty}^{\infty} t \sin^2(t) \delta(\pi - t) dt \]

5. Consider the following input-output system
 \[y(t) = T\{x(t)\} = \frac{1}{T} \int_{t/2}^{t/2 + T/2} x(\tau) d\tau \]

 Determine whether the systems is (a) linear, (b) time-invariant, and (c) causal.